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A new statistical damage theory 
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The shortcomings of continuum damage mechanics (CDM) are discussed and non- 
equilibrium statistical physics is used to establish a new statistical theory of inhomogeneous 
damage. The initiation and growth of microscopically damaged regions (cracks, voids, etc.) 
is regarded as the elementary process of damage to the material structure and the 
accumulation damage, i.e. damage variable, is universally defined as the failure probability 
of the material due to the initiation and growth of the microscopically damaged regions. 
From the statistical evolution equation of damaged regions, and the minimum strength 
principle, a partial differential equation, which universally describes the evolution of damage 
parameter, is found. Not only can this equation characterize the kinetic process of damage 
evolution, but it can also establish the relationships between the microbehaviour of damage 
(the initiation and growth of the microscopically damaged regions and the statistical 
consequences of damage) and the degradation of material properties. Finally, as an 
example, the newly developed theory is applied to study the time-dependent fracture of 
AI203 ceramic. The effects of structural inhomogeneity on mechanical properties of the 
material is discussed. 

1. Introduction 
The concept of damage has been widely accepted in 
describing the evolution of material structure and the 
degradation of mechanical properties of materials 
subjected to externally applied stress and environ- 
ment. But the mathematical representation and the 
physical meaning of the damage variable are still not 
very certain. According to continuum damage mech- 
anics (CDM), the general definition of a damage vari- 
able, w, is [,1] 

where 

0 ~ w ~ 1 (la) 

01 for a virgin material 
(lb) 

w = for a failed material 

Apart from this, there is no rigorous form of definition 
for damage variable. For this reason there are many 
forms of definition for the damage variable given for 
different models. Some are defined by the effective 
cross-section or the effective volume of materials 
[,1, 2], some by defect density (cracks, voids, etc.) [3], 
some by the density of strain energy [-4], but none is 
universally accepted. In the discussion about the phys- 
ical meaning of damage, it is suggested that the dam- 
age variable can be appropriately interpreted as the 
impairment of the stress-transmitting capacity of 
a material structure as a result of the presence of 
defects [-31. But the impairment is neither conveniently 
evaluated from theory nor easily measured from 
experiments. In order to study the time-depen- 
dent evolution of material damage, Kachanov also 
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proposed the kinetic equation of damage phenom- 
enologically [-1] 

dw Coy p 

dt (1 - w) q 
(2) 

where C, p, q are all material constants to be deter- 
mined by experiments. 

Investigating the theory of CDM we can find that it 
has two obvious flaws, even though it is quite success- 
ful in studying the damage of various materials in 
different situations. One is that the definition of dam- 
age variable is not unique and the relations between 
the different definitions are not clear. This caused 
some confusion in the understanding of damage and 
spawned a host of substantially different methods 
dealing with the same phenomenon. The other is that 
the damage parameter and its kinetic equation do not 
correlate with the micromechanism of structure 
damage, especially the localized damage, so that the 
connections between the damage behaviour of 
microstructure and the degradation of macroscopic 
properties of materials are not clear either. Conse- 
quently, it appears necessary to give the damage para- 
meter a mathematically, and physically in particular, 
acceptable definition and to find theoretically a mi- 
cromechanism-dependent kinetic equation of damage. 

Actually, in principle, the damage to a material 
caused by applied stress originated from the deteriora- 
ting evolution of microstructure in the form of 
cracks, void or other forms of defects, while the degra- 
dation of different mechanical properties of the m~Iter- 
ial, the Young's modulus for example, is only the 
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representation of microstructure evolution in different 
aspects. But, on the contrary, some representations in 
a specified aspect are not eligible to characterize the 
whole behaviour of material damage. Hence the 
abovementioned different definitions of damage vari- 
able are all not theoretically appropriate, even though 
they are usually very simple for practical use. The 
evolution of microstructure, for example cracking, is 
usually inhomogeneous and localized, it varies ran- 
domly for different time and locations due to the 
inhomogeneous microstructure, hence it causes the 
microscopic damage to the material structure, while 
the damage parameter expressed by Equation 1 is the 
accumulation damage or macroscopic damage of the 
material. It presents the statistical behaviour of micro- 
scopic damage. Therefore, an ideal definition of the 
damage parameter should, on the one hand, correlate 
with the mechanism of microscopic damage and, on 
the other hand, has statistical meaning. The damage 
parameter so defined can naturally realize the connec- 
tions between the micromechanism of structure evolu- 
tion and mechanical properties of the material. In this 
paper, from the viewpoint of stochastic evolution of 
microscopic damage, we use the theory of non-equilib- 
rium statistical physics, to establish a new statistical 
damage theory and derive a partial differential equa- 
tion for the damage parameter from the statistical 
evolution equation of microscopically damaged re- 
gions and the minimum strength principle, which can 
universally describe the evolution of the damage para- 
meter with time due to the initiation and growth of 
damaged regions in the material. Finally, we give an 
example for the application of the newly developed 
theory. 

2. Evolution of failure probability 
The process of failure of a material is the process 
in which many microscopically damaged regions 
(cracks, voids, etc.) initiate and grow continuously in 
the material under the action of applied stress 
and then the most critical one of them propagates 
unstably, causing the catastrophic failure of the mater- 
ial. Because the microstrueture of a material is 
usually inhomogeneous, the growth rate of the dam- 
age regions is stochastic. For convenience of handling, 
the microstructure of the material is considered as 
the average structure background superimposed 
by the inhomogeneous structure fluctuation due 
to all kinds of inhomogeneity. Then the growth rate 
of the size of a damaged region, a, is expressed 
as [5, 6] 

da 
- M(a) + ~3(a)f(t) (3) 

dt 

where M(a) is the migration growth rate, which is 
determined by the average structure background of 
the material and the applied stress, f(t) is the fluctu- 
ation function, which is related to the stochastic fluc- 
tuation of microstructure and the applied stress, 13(a) is 
a fluctuation magnifying function, f(t) is assumed to 
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be the white noise, so 

( f ( t ) )  = 0 
( f ( t ) f ( t ' ) )  QS(t - t') 

(4) 

where Q is the fluctuation coefficient, which character- 
izes the effect of microstructure fluctuation on the 
growth of the damaged regions. The Fokker-Planck 
equation in equivalence to Equation 3 [7], which 
describes the evolution of microscopically damaged 
regions, is 

Sp(a, t) S S[3(a)-] , 
St - Sa{ IM(a)+~(a ) -~a -a  J pta't)} 

Q 8 2 
+ ~ a 2  [[32(a)p(a, t)] (5) 

where p(a, t)da is the probability that a damaged 
region grows to a size between a and a + da at time t. 
When a large number of microscopically damaged 
regions is considered the failure probability of the 
material can be obtained from the minimum strength 
principle as follows [5, 6] 

l F(~,t) = 1 -- 1-- p(a,t) da V (6) 
(cO 

where a(c~) is the critical size of the damaged regions, 
which is a monotonically decreasing function of ap- 
plied stress cy, p is the density of the damaged regions 
and the V is the material volume. Differentiating 
Equation 6 with respect to t, we have 

SF _ 9 V ( 1 - F )  1 - ~  I ~ Sp(c,t) da 
St J~(~) St 

- (1 - F ) l n ( 1  - F )  d l n ~ p  
dt 

(7) 

Substituting Equation 5 into the above equation, we 
obtain 

8F 

8t 
1 Q 13(a) S[3(a)] 

p V ( 1 - F ) l - ~ V { [ M ( a ) + 2  8a J 

Q S 2 } dln p 
xp(a, t)-~-aa[~3 (a)p(a,t)] a(~,) dt 

x (1 - -  F)ln(1 - -  F) (8) 

Then differentiating Equation 6 with respect to a once 
and twice, we find 

SF 1 
- -  p g ( 1  - -  F) 1-O-V[- p ( a ,  ~)]a(<y) (9)  

Sa 

S2F [ 2 
Sa 2 - pV(gV -- 1)(1 -- F)l-C-CpZ(a, t) 

8p(a, t) ] 
- -  p V ( 1  - -  F )  1 - V r  8 a  a(~) (10) 



Inserting Equations 9 and 10 into Equation 8 yields 
the evolution equation of failure probability 

~ + M(a) - ~ ~a ~a -- 2 [32(a) 8a ~ 

2 1 - - f \ ~ a ]  ~(~) 

! do 
: ~ (1 - F)In(1 - F) 
9 Clt 

(11) 

From this equation it can be seen that the change rate 
of failure probability of a material with time is deter- 
mined by the initiation, growth and fluctuation of 
microscopically damaged regions, which are charac- 
terized by dp/d, M(a), ~(a) and Q, respectively. If the 
non-linear term in Equation 10, p2(a, t), is considered 
small, Equation 11 reduces to the first Kolmogorov 
equation as follows 

~ Fs~ f [  2Q n " " ~ ~ ( a ) l ~ ~a 2 Q + , ~ _ M ( a ) -  pta) j - f32(a) 

~2F ~ _ din 9 (1 - F) in  (1 - F) (12) 
X ~ a  2 Ja(e) dt 

It should be noted that the failure probability can be 
directly obtained by solving Equation l2 when 
dp/d, M(a), f3(a) and Q are known and there is no need 
to solve the probability distribution function of 
damaged regions p(a, t) as we did in previous work 
[5, 6]. 

as follows 

~-~ + M(a) - ~ ~(a) ~a - 2 ~2(a) ~ a  2 a(~) 

_ 1 do (1 - w ) l n ( 1 -  w) (14) 
p dt 

The damage parameter can be directly solved from the 
above equation in combination with some initial and 
boundary conditions. When the fluctuation of the 
growth rate of the damaged regions is negligibly small, 
the above equation reduces to a simpler form 

~w [ ~w] _ ~ ~ (1 -- w)ln(1 - w) O~-F M(a)~a .(~) 

(15) 

which corresponds to the damage in a uniform mater- 
ial. If the total number of damaged regions is a con- 
stant, dp/dt = 0, above equation reduces to an even 
simpler form 

~ + M(a) = 0 (16) 
a(~) 

For the case where many different mechanisms of 
damage to material microstructure exist, the evolution 
equation of damage can also be established in the 
same way, but its form will be more complex. The 
discussion about the evolution equation of damage for 
many mechanisms will be given elsewhere. 

3. E v o l u t i o n  e q u a t i o n  o f  d a m a g e  
Failure probability F(cy, t) determined from Equa- 
tion 12 not only correlates with the mechanism of 
microstructure evolution but also has statistical mean- 
ing, meanwhile it coincides with the general definition 
of damage variable (Equation 1). Therefore, we de- 
fined the failure probability as the damage variable, 
w [5, 6, 8, 9], that is 

w[a(cy), t] = F(cy, t) (13) 

This definition is universal, for it is applicable to 
different processes of damage to various materials as 
long as the initiation and growth behaviour of micro- 
scopically damaged regions are known. Furthermore, 
it also characterizes the physical meaning of damage 
interpreted as the impairment of the stress-trans- 
mitting capacity of material structure given by 
Krajcinovic. Because the impairment of the stress- 
transmitting capacity is caused by the initiation and 
growth of microscopically damaged regions under the 
action of applied stress, then the failure probability 
can statistically present the extent of the impairment. 
However, this definition is neither too abstract to 
evaluate theoretically nor too concrete to characterize 
the damage of material microstructure as a whole. 
Therefore, this definition of damage variable is phys- 
ically acceptable. Substituting Euation 13 into Equa- 
tion 12, we obtain the evolution equation of damage 

4. Example of application 
In order to show the performance of our theory, we 
take the time-dependent fracture of brittle materials 
due to the slow growth of pre-existing cracks under 
uniaxial tension as an example. First, we derive the 
time-dependent damage parameter and the average 
lifetime for both homogeneous and inhomogeneous 
materials. Then we apply above theoretical results to 
A1203 ceramic and see how the structural in- 
homogeneity affects the mechanical properties of the 
material. 

4.1. Homogeneous materials 
In this case, the damage mechanism is the slow growth 
of the pre-existing cracks. The slow crack growth rate 
is usually expressed as [10] 

da 
- M(a) = A(c~Y)~a 2 (17) 

dt 

where A, n are two material constants, Y is the geo- 
metric factor. The critical condition for unstable 
propagation of cracks is 

a(r~) = (KI~ (18) 

where KIo is the fracture toughness of the mater- 
ial. Consequently, according to Equation 16, the 

3881 



evolution equation of damage parameter should 
be 

From Equation 14 the corresponding evolution equa- 
tion of damage should be 

n n~W aW A(~Y) a X - - ]  = 0 (19) 
~w - - +  
at 

{[A(cyy)nan/2-Q--an-t]~w 
4 J ~a 

Here the initial condition is assumed to be the two- 
parameter Weibull function [-9J 

Q .a2w~ 
~-a ~ ~ = 0 (26) 

)a=(K~/Ya) 

[ w[a(c~), t = 0] = 1 - exp - pV (20) 

where m is the Weibull modulus and % is the stress 
corresponding to the smallest crack size, ao. Solving 
Equations 19 and 20 we obtain the damage parameter 
a s  

w(a,t) = 1 - exp - p V  

(21) 

in which the fluctuation coefficient, Q, is defined by 
Equation 4. Solving Equations 26 and 20, we find the 
damage parameter to be 

w(a ,  t) = 

where 

1 - ~ exp - p V 
J-(A~t/2Q) m ~0 

l)m/(n- 2) "~ 

x~ } ) e x p ( - ~ 2 ) d ~  (27) 

A 1 = A(cyY)" (28)  

which is identical to the result obtained in another 
way [11]. With w(a, t) we can calculate the average 
lifetime of a material, tr, corresponding to a specified 
stress, er. 

;0 ~ aw fo~ tf = t - ~ d t  = (1 - w) dt (22) 
o 

Substituting Equation 21 into the above equation and 
calculating, we obtain 

tf  z 
o-~ -2 F[1 + (n - 2)/m] 

{[(n -- 2)/2]AYZK~Z(y" } (pV) ("- 2)/m 

(23) 

In the above calculation, we have used the ap- 
proximation that Ac~2Kfs >~ 1. With Equation 23, 
the damage parameter can be rewritten in a simpler 
form 

w(~, t) = 

m { [( 1 - - e x p  -- F 1 +  
m 

(24) 

It is also a Weibull function with the shape and scale 
parameters fully determined by the applied stress and 
the material characteristics. 

Go = 2 ( a o  ~ + 1  - a - g + l )  - A l t  ( 2 Q t )  1/2 

and N is a normlization factor. 

(29) 

N_ 1 _ 1 if_ 7~1/2 (A~t/2Q) 1`2 exp( - ~z)dE (30) 

Although the integration in Equation 27 cannot be 
calculated analytically, we are able to see some features 
of w(a, t). When t tends to zero, w(a, t) reduces to the 
initial damage (Equation 20). On the contrary, when 
t tends to infinity, we have w(cy, t--; oo)= 1, which 
means that if the duration of the load is very large, 
failure of the material will definitely occur. Further- 
more, because a(cy) is a monotonically decreasing func- 
tion of applied stress, cr, from Equation 27 we can also 
find that w(a ~ 0, t) = 0 and w(c~ --+ 0% t) = 1. This in- 
dicates that the failure of  the material does not occur 
without the action of applied stress and the failure will 
definitely occur when the applied stress is very large. 
Similarly, the average lifetime of a material can be 
obtained by combining Equations 22 and 27 

f ;Nfr  m 

n - - 2  
x 1 + -  A(cIy)2 tK~o -2  

1l 

4.2. I n h o m o g e n e o u s  mater ia ls  
For the case of inhomogeneous materials, the slow 
crack growth rate must be expressed by a stochastic 
equation such as Equation 3; then we have [5, 6] 

d a  - A(c~Y)'a "/z + a"lZf(t) (25) 
dt 

m 

which can only be calculated numerically. If Q tends to 
zero, Equations 22 and 3l will reduce to the damage 
parameter and the average lifetime corresponding to 
homogeneous materials, Equations 21 and 23. 
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4.3. Calculation 
Here we apply the above results to 96% A1203 ceramic 
with average grain size of 32 gm under eccentric loading 
in which the cracks grow due to the tensile stress. The 
slow crack growth rate is expressed as a power func- 
tion of the ratio of stress intensity factor over the 
fracture toughness [12]. 

da (Ka~n 
d-~ = B (32) \K,o/ 

In comparison with Equation 17 it is easily found that 

B 
A - (33) 

KL 

With Equations 33, 21 and 27 we can calculate the 
failure probability function of the material with homo- 
geneous and inhomogeneous structures, respectively. 
The material parameters used for calculation are listed 
in Table I. The failure probability of the material un- 
der different applied stresses for the case where 
Q = 0.0 is shown in Fig. 1. We can see that the failure 
probability increases obviously with the increase of 
applied stress. When the structural inhomogeneity is 
considered the failure probability will deviate from 
that for homogeneous structure, depending on the 

T A B L E  I Material characteristics of 96 % AI20 3 ceramic 

WeibuU modulus  
Flaw density 
Volume of specimen 
Initial crack size 
Parameters  in crack growth law 

Fracture toughness 
Fluctuation coefficient 

M =  10 
p = 106m -3 

V = 1 0 - 3 m  3 

a0 = 40 txm 
n = 3 1  
B = 6 .74ms  -1 
Y = 1.27 
K l c =  5.3 M P a  
Q1 = 3.34x 1034~" 
Q2 = 8.35 x 1035 er" 

value of the fluctuation coefficient. Figs 2 4 show the 
variations of failure probability corresponding to dif- 
ferent values of fluctuation coefficient. The solid, 
dashed and long dashed lines correspond, respectively, 
to a homogeneous structure and a structure with Small 
inhomogeneity characterized by Q1, and a very in- 
homogeneous structure characterized by Q2. The 
parameters used for calculation are listed in Table I 

The relation between the fluctuation coefficient and 
the structural inhomogeneity has been discussed else- 
where [13]. From the figures it is seen that the failure 
probability decreases with the increase of fluctuation 
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Figure 2 Failure probability under 120 M P a  for different values of 
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Figure 1 Failure probability for different applied stresses. 
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Figure 5 The log cy-log t elation for 96% A1203 corresponding to 
different values of fluctuation coefficient. ( - - )  Q = 0.0, ( - - )  (21, 
( - - - -  ) Q2, (rN) Experimental data. 

coefficient, but this effect becomes less obvious when 
the applied stress and the duration of stress action are 
very large. Physically, this means that an in- 
homogeneous structure is more reliable than a homo- 
geneous structure�9 Although it is widely accepted that 
an inhomogeneous structure is more resistant to crack 
growth and some models have been proposed to ex- 
plain this phenomenon [14], how the structural in- 
homogeneity of material affects the global response of 
the material is still unclear. The theory developed in 
this paper provides a quantitative explanation to this 
problem. The calculated stress-lifetime curves corres- 
ponding to different values of the fluctuation coeffic- 
ient according to Equations23 and 32 and the 
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comparison with experimental data [12] are shown in 
Fig. 5. The linear relation between log ~ and log t can 
be found. The figure indicates that an inhomogeneous 
material is of longer lifetime than a homogeneous 
material. Because no systematic experimental data on 
the effects of structural inhomogeneity on mechanical 
properties of materials have been found, this result can 
only serve as a prediction to be verified experi- 
mentally�9 

5. Conclusion 
The concept of damage has been widely used for 
decades, but its physical meaning has always been 
ambiguous to some extent. Continuum damage mech- 
anics, which is successfully used to study the degrada- 
tion of material properties, also has some flaws in its 
theory so that it cannot satisfactorily describe the 
inhomogeneous damage and establish the relationship 
between the micromechanism of material damage and 
the mechanical properties of materials. Therefore, the- 
oretical improvement and development are needed. 

In this paper, the growth of microscopically 
damaged regions has been considered as the elemen- 
tary process of damage to a material structure and the 
non-equilibrium statistical method was used to estab- 
lish the statistical damage theory. On the basis of the 
universal definition of damage parameter, which is 
defined as the failure probability of a material, a new 
partial differential equation or the evolution equation 
of damage has been developed to describe the evolu- 
tion of macroscopic damage or accumulation damage 
of the material due to the initiation and growth of 
microscopically damaged regions (cracks, voids, etc.) 
under the action of applied stress. The evolution equa- 
tion of damage is applicable to the study of the dam- 
age evolution of various materials for different cases, 
for instance, fatigue fracture of materials under simple 
tension or multi-axial load, as long as the micro- 
mechanisms of initiation, growth and propagation of 
microscopically damaged regions are known. As an 
example of the application of our newly developed 
theory, the time-dependent fracture of brittle materials 
with a pre-existing flaw distribution has been dis- 
cussed. The calculated results for 96% AlzO3 ceramic 
under eccentric loading, show that an inhomogeneous 
material is more reliable than a homogeneous one, 
especially when the applied stress is low and in the 
early stage of crack growth, and the lifetime of a ma- 
terial increases with increase of its structural in- 
homogeneity. As compared with the theory of CDM, 
our theory has the following advantages. 

1. The statistical damage theory is based on the 
kinetic foundation of microstructure evolution and 
realizes the connection between the micromechanism 
of structural damage and the global response of 
materials naturally. 

2. The evolution equation of damage is much more 
substantial and phenomenologically effective than the 
kinetic equation of damage proposed by Kachanov in 
describing material damage. 

The statistical damage theory established in this 
paper can be further developed to describe the damage 



evolution due to different parallel mechanisms. This 
discussion will be presented separately. 
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